High Efficiency Flyback Converter Using Synchronous Rectification
This paper presents a method of driving a synchronous rectifier in a flyback topology. For optimum driving of the synchronous rectifier in a flyback converter, the primary side gate signal has to be transferred to the secondary with minimum delay. This paper presents a method of signal transfer through a power transformer without interference with the main power train. In this concept, the main transformer of the flyback converter is used to store and transfer energy to the secondary and, at the same time, to transfer the gate signal from the primary side to the secondary side with minimum delay. Both the power winding and the signal transfer winding are incorporated in a multilayer PCB, reducing the labor cost. Incorporating the signal winding and the power winding on the same magnetic core decreases the cost and increases the power density, which is a very important feature for the latest generation of DC-DC power converters. This technology is implemented in a 15 W 3.3 V@ 4.5A DC-DC converter, with an efficiency reaching 90% at full load. The power density of the converter reaches 40 W/inch3